16 research outputs found

    A Critical Appraisal of Ward-based Interventions in the Care of the Acutely Unwell Patient

    No full text
    Medical Emergency Teams and Critical Care Outreach services are used to try to improve the care of patients in the ward environment. The limited treatment options include oxygen therapy, non-invasive ventilation, intravenous fluid therapy and in some institutions, inotropic support. The efficacy of such interventions is unclear. Four studies used both lung models and clinical observation to assess oxygen therapy. The model demonstrated a deterioration in oxygen delivery for the variable flow systems (Hudson mask, Hudson non-rebreather mask and nasal cannulae) as minute ventilation increased. Performance was relatively preserved for a venturi system and a high flow nasal cannula system (Vapotherm®). Peak inspiratory flow rates (PIFR) were assessed in patients with respiratory distress and matched controls. This demonstrated a higher median PIFR of 76.5 l.min-1 (IQR 51.25 l.min-1) in patients when compared with controls, median of 30.00 (IQR 6.00 l.min-1) (p<0.0001). The model was used to assess continuous positive airway pressure (CPAP) and showed no deterioration in oxygen delivery with respiratory rate, with or without a CPAP valve. When applied clinically in patients with acute respiratory distress, a significant increase in mean arterial oxygenation was observed on moving from a venturi mask (FiO2 0.6) to CPAP even without the valve, with a mean increase of PaO2 of 10.69 kPa (SD 5.14 kPa) p<0.0001 (n=53). The application of pressure with the CPAP valve did not increase this value over the 2 hours studied. The use of intravenous fluid resuscitation (IFR) in the ward was audited. Delay in fluid administration, a wide range of volume delivered and a lack of monitoring were demonstrated. This audit produced the hypothesis that better monitoring of fluid therapy in the wards may reduce the volume delivered and incidence of complications. The final study thus compared a simple-to-use cardiac output monitor (Vigileo Flotrac®) to a dye-dilution system (LiDCO®). The two systems were found to have good agreement both in terms of cardiac output (bias positive in favour of the LiDCO 0.58 l.min-1). The upper 95% limit is +1.40 l.min-1 and the lower 95% limit, - 0.28 l.min-1). And stroke volume variation (Bias of 0 with 95% limits of +/- 3.3%). In conclusion this thesis demonstrates the impact of abnormal ventilation on oxygen delivered by some mask systems. It shows the efficacy of a tight fitting CPAP mask and high flow generator, but incidentally demonstrates that, at least initially it is the mask system rather than the pressure that has a pronounced effect on oxygenation. Fluid management in the ward patient appears poorly controlled and often excessive so may benefit from improved monitoring. To this end a cardiac output monitor that may be suitable for ward use has been shown to be comparable with a more established technique

    Abiraterone acetate plus prednisolone for metastatic patients starting hormone therapy: 5-year follow-up results from the STAMPEDE randomised trial (NCT00268476)

    Get PDF
    Abiraterone acetate plus prednisolone (AAP) previously demonstrated improved survival in STAMPEDE, a multiarm, multistage platform trial in men starting long-term hormone therapy for prostate cancer. This long-term analysis in metastatic patients was planned for 3 years after the first results. Standard-of-care (SOC) was androgen deprivation therapy. The comparison randomised patients 1:1 to SOC-alone with or without daily abiraterone acetate 1000 mg + prednisolone 5 mg (SOC + AAP), continued until disease progression. The primary outcome measure was overall survival. Metastatic disease risk group was classified retrospectively using baseline CT and bone scans by central radiological review and pathology reports. Analyses used Cox proportional hazards and flexible parametric models, accounting for baseline stratification factors. One thousand and three patients were contemporaneously randomised (November 2011 to January 2014): median age 67 years; 94% newly-diagnosed; metastatic disease risk group: 48% high, 44% low, 8% unassessable; median PSA 97 ng/mL. At 6.1 years median follow-up, 329 SOC-alone deaths (118 low-risk, 178 high-risk) and 244 SOC + AAP deaths (75 low-risk, 145 high-risk) were reported. Adjusted HR = 0.60 (95% CI: 0.50-0.71; P = 0.31 × 10−9) favoured SOC + AAP, with 5-years survival improved from 41% SOC-alone to 60% SOC + AAP. This was similar in low-risk (HR = 0.55; 95% CI: 0.41-0.76) and high-risk (HR = 0.54; 95% CI: 0.43-0.69) patients. Median and current maximum time on SOC + AAP was 2.4 and 8.1 years. Toxicity at 4 years postrandomisation was similar, with 16% patients in each group reporting grade 3 or higher toxicity. A sustained and substantial improvement in overall survival of all metastatic prostate cancer patients was achieved with SOC + abiraterone acetate + prednisolone, irrespective of metastatic disease risk group

    Safety, immunogenicity, and reactogenicity of BNT162b2 and mRNA-1273 COVID-19 vaccines given as fourth-dose boosters following two doses of ChAdOx1 nCoV-19 or BNT162b2 and a third dose of BNT162b2 (COV-BOOST): a multicentre, blinded, phase 2, randomised trial

    Get PDF

    Abiraterone acetate and prednisolone with or without enzalutamide for high-risk non-metastatic prostate cancer: a meta-analysis of primary results from two randomised controlled phase 3 trials of the STAMPEDE platform protocol

    Get PDF
    © 2022 The Authors. Published by Elsevier. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(21)02437-5/fulltextBackground Men with high-risk non-metastatic prostate cancer are treated with androgen-deprivation therapy (ADT) for 3 years, often combined with radiotherapy. We analysed new data from two randomised controlled phase 3 trials done in a multiarm, multistage platform protocol to assess the efficacy of adding abiraterone and prednisolone alone or with enzalutamide to ADT in this patient population. Methods These open-label, phase 3 trials were done at 113 sites in the UK and Switzerland. Eligible patients (no age restrictions) had high-risk (defined as node positive or, if node negative, having at least two of the following: tumour stage T3 or T4, Gleason sum score of 8–10, and prostate-specific antigen [PSA] concentration ≥40 ng/mL) or relapsing with high-risk features (≤12 months of total ADT with an interval of ≥12 months without treatment and PSA concentration ≥4 ng/mL with a doubling time of <6 months, or a PSA concentration ≥20 ng/mL, or nodal relapse) non-metastatic prostate cancer, and a WHO performance status of 0–2. Local radiotherapy (as per local guidelines, 74 Gy in 37 fractions to the prostate and seminal vesicles or the equivalent using hypofractionated schedules) was mandated for node negative and encouraged for node positive disease. In both trials, patients were randomly assigned (1:1), by use of a computerised algorithm, to ADT alone (control group), which could include surgery and luteinising-hormone-releasing hormone agonists and antagonists, or with oral abiraterone acetate (1000 mg daily) and oral prednisolone (5 mg daily; combination-therapy group). In the second trial with no overlapping controls, the combination-therapy group also received enzalutamide (160 mg daily orally). ADT was given for 3 years and combination therapy for 2 years, except if local radiotherapy was omitted when treatment could be delivered until progression. In this primary analysis, we used meta-analysis methods to pool events from both trials. The primary endpoint of this meta-analysis was metastasis-free survival. Secondary endpoints were overall survival, prostate cancer-specific survival, biochemical failure-free survival, progression-free survival, and toxicity and adverse events. For 90% power and a one-sided type 1 error rate set to 1·25% to detect a target hazard ratio for improvement in metastasis-free survival of 0·75, approximately 315 metastasis-free survival events in the control groups was required. Efficacy was assessed in the intention-to-treat population and safety according to the treatment started within randomised allocation. STAMPEDE is registered with ClinicalTrials.gov, NCT00268476, and with the ISRCTN registry, ISRCTN78818544. Findings Between Nov 15, 2011, and March 31, 2016, 1974 patients were randomly assigned to treatment. The first trial allocated 455 to the control group and 459 to combination therapy, and the second trial, which included enzalutamide, allocated 533 to the control group and 527 to combination therapy. Median age across all groups was 68 years (IQR 63–73) and median PSA 34 ng/ml (14·7–47); 774 (39%) of 1974 patients were node positive, and 1684 (85%) were planned to receive radiotherapy. With median follow-up of 72 months (60–84), there were 180 metastasis-free survival events in the combination-therapy groups and 306 in the control groups. Metastasis-free survival was significantly longer in the combination-therapy groups (median not reached, IQR not evaluable [NE]–NE) than in the control groups (not reached, 97–NE; hazard ratio [HR] 0·53, 95% CI 0·44–0·64, p<0·0001). 6-year metastasis-free survival was 82% (95% CI 79–85) in the combination-therapy group and 69% (66–72) in the control group. There was no evidence of a difference in metatasis-free survival when enzalutamide and abiraterone acetate were administered concurrently compared with abiraterone acetate alone (interaction HR 1·02, 0·70–1·50, p=0·91) and no evidence of between-trial heterogeneity (I2 p=0·90). Overall survival (median not reached [IQR NE–NE] in the combination-therapy groups vs not reached [103–NE] in the control groups; HR 0·60, 95% CI 0·48–0·73, p<0·0001), prostate cancer-specific survival (not reached [NE–NE] vs not reached [NE–NE]; 0·49, 0·37–0·65, p<0·0001), biochemical failure-free-survival (not reached [NE–NE] vs 86 months [83–NE]; 0·39, 0·33–0·47, p<0·0001), and progression-free-survival (not reached [NE–NE] vs not reached [103–NE]; 0·44, 0·36–0·54, p<0·0001) were also significantly longer in the combination-therapy groups than in the control groups. Adverse events grade 3 or higher during the first 24 months were, respectively, reported in 169 (37%) of 451 patients and 130 (29%) of 455 patients in the combination-therapy and control groups of the abiraterone trial, respectively, and 298 (58%) of 513 patients and 172 (32%) of 533 patients of the combination-therapy and control groups of the abiraterone and enzalutamide trial, respectively. The two most common events more frequent in the combination-therapy groups were hypertension (abiraterone trial: 23 (5%) in the combination-therapy group and six (1%) in control group; abiraterone and enzalutamide trial: 73 (14%) and eight (2%), respectively) and alanine transaminitis (abiraterone trial: 25 (6%) in the combination-therapy group and one (<1%) in control group; abiraterone and enzalutamide trial: 69 (13%) and four (1%), respectively). Seven grade 5 adverse events were reported: none in the control groups, three in the abiraterone acetate and prednisolone group (one event each of rectal adenocarcinoma, pulmonary haemorrhage, and a respiratory disorder), and four in the abiraterone acetate and prednisolone with enzalutamide group (two events each of septic shock and sudden death). Interpretation Among men with high-risk non-metastatic prostate cancer, combination therapy is associated with significantly higher rates of metastasis-free survival compared with ADT alone. Abiraterone acetate with prednisolone should be considered a new standard treatment for this population.Cancer Research UK, UK Medical Research Council, Swiss Group for Clinical Cancer Research, Janssen, and Astellas.Published versio

    Measuring universal health coverage based on an index of effective coverage of health services in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Achieving universal health coverage (UHC) involves all people receiving the health services they need, of high quality, without experiencing financial hardship. Making progress towards UHC is a policy priority for both countries and global institutions, as highlighted by the agenda of the UN Sustainable Development Goals (SDGs) and WHO's Thirteenth General Programme of Work (GPW13). Measuring effective coverage at the health-system level is important for understanding whether health services are aligned with countries' health profiles and are of sufficient quality to produce health gains for populations of all ages. Methods Based on the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we assessed UHC effective coverage for 204 countries and territories from 1990 to 2019. Drawing from a measurement framework developed through WHO's GPW13 consultation, we mapped 23 effective coverage indicators to a matrix representing health service types (eg, promotion, prevention, and treatment) and five population-age groups spanning from reproductive and newborn to older adults (≥65 years). Effective coverage indicators were based on intervention coverage or outcome-based measures such as mortality-to-incidence ratios to approximate access to quality care; outcome-based measures were transformed to values on a scale of 0–100 based on the 2·5th and 97·5th percentile of location-year values. We constructed the UHC effective coverage index by weighting each effective coverage indicator relative to its associated potential health gains, as measured by disability-adjusted life-years for each location-year and population-age group. For three tests of validity (content, known-groups, and convergent), UHC effective coverage index performance was generally better than that of other UHC service coverage indices from WHO (ie, the current metric for SDG indicator 3.8.1 on UHC service coverage), the World Bank, and GBD 2017. We quantified frontiers of UHC effective coverage performance on the basis of pooled health spending per capita, representing UHC effective coverage index levels achieved in 2019 relative to country-level government health spending, prepaid private expenditures, and development assistance for health. To assess current trajectories towards the GPW13 UHC billion target—1 billion more people benefiting from UHC by 2023—we estimated additional population equivalents with UHC effective coverage from 2018 to 2023. Findings Globally, performance on the UHC effective coverage index improved from 45·8 (95% uncertainty interval 44·2–47·5) in 1990 to 60·3 (58·7–61·9) in 2019, yet country-level UHC effective coverage in 2019 still spanned from 95 or higher in Japan and Iceland to lower than 25 in Somalia and the Central African Republic. Since 2010, sub-Saharan Africa showed accelerated gains on the UHC effective coverage index (at an average increase of 2·6% [1·9–3·3] per year up to 2019); by contrast, most other GBD super-regions had slowed rates of progress in 2010–2019 relative to 1990–2010. Many countries showed lagging performance on effective coverage indicators for non-communicable diseases relative to those for communicable diseases and maternal and child health, despite non-communicable diseases accounting for a greater proportion of potential health gains in 2019, suggesting that many health systems are not keeping pace with the rising non-communicable disease burden and associated population health needs. In 2019, the UHC effective coverage index was associated with pooled health spending per capita (r=0·79), although countries across the development spectrum had much lower UHC effective coverage than is potentially achievable relative to their health spending. Under maximum efficiency of translating health spending into UHC effective coverage performance, countries would need to reach 1398pooledhealthspendingpercapita(US1398 pooled health spending per capita (US adjusted for purchasing power parity) in order to achieve 80 on the UHC effective coverage index. From 2018 to 2023, an estimated 388·9 million (358·6–421·3) more population equivalents would have UHC effective coverage, falling well short of the GPW13 target of 1 billion more people benefiting from UHC during this time. Current projections point to an estimated 3·1 billion (3·0–3·2) population equivalents still lacking UHC effective coverage in 2023, with nearly a third (968·1 million [903·5–1040·3]) residing in south Asia. Interpretation The present study demonstrates the utility of measuring effective coverage and its role in supporting improved health outcomes for all people—the ultimate goal of UHC and its achievement. Global ambitions to accelerate progress on UHC service coverage are increasingly unlikely unless concerted action on non-communicable diseases occurs and countries can better translate health spending into improved performance. Focusing on effective coverage and accounting for the world's evolving health needs lays the groundwork for better understanding how close—or how far—all populations are in benefiting from UHC

    Abiraterone acetate plus prednisolone for metastatic patients starting hormone therapy: 5‐year follow‐up results from the STAMPEDE randomised trial (NCT00268476)

    Get PDF
    This is an accepted manuscript of a paper published by Wiley in International Journal of Cancer on 12/04/2022, available online: https://doi.org/10.1002/ijc.34018 The accepted manuscript of the publication may differ from the final published versionAbiraterone acetate plus prednisolone (AAP) previously demonstrated improved survival in STAMPEDE, a multi-arm, multi-stage platform trial in men starting long-term hormone therapy for prostate cancer. This long-term analysis in metastatic patients was planned for 3 yrs after the first results. Standard-of-care (SOC) was androgen deprivation therapy. The comparison randomized patients 1:1 to SOC-alone with or without daily abiraterone acetate 1000 mg + prednisolone 5 mg (SOC + AAP), continued until disease progression. The primary outcome measure was overall survival. Metastatic disease risk group was classified retrospectively using baseline CT and bone scans by central radiological review and pathology reports. Analyses used Cox proportional hazards & flexible parametric models, adjusted for baseline stratification factors. 1003 patients were contemporaneously randomized (Nov-2011--Jan-2014): median age 67 yr; 94% newly-diagnosed; metastatic disease risk group: 48% high, 44% low, 8% un-assessable; median PSA 97 ng/mL. At 6.1 yr median follow-up, 329 SOC-alone deaths (118 low-risk, 178 high-risk) and 244 SOC + AAP deaths (75 low-risk, 145 high-risk) were reported. Adjusted HR = 0·60 (95%CI:0·50—0·71; P = 0.31x10−9) favoured SOC + AAP, with 5-yr survival improved from 41% SOC-alone to 60% SOC + AAP. This was similar in low-risk (HR = 0·55; 95%CI:0·41—0·76) and high-risk (HR = 0·54; 95%CI:0·43—0·69) patients. Median and current maximum time on SOC + AAP was 2.4 yr and 8.1 yr. Toxicity at 4 yr post-randomisation was similar, with 16% patients in each group reporting grade 3 or higher toxicity. A sustained and substantial improvement in overall survival of all metastatic prostate cancer patients was achieved with SOC + abiraterone acetate + prednisolone, irrespective of metastatic disease risk group.Cancer Research UK, (CRUK_A12459), Medical Research Council (MRC_MC_UU_12023/25, MC_UU_00004/01), UK Clinical Research Network, and the Swiss Group for Cancer Clinical Research (SAKK).Published onlin

    Abiraterone acetate plus prednisolone with or without enzalutamide for patients with metastatic prostate cancer starting androgen deprivation therapy: final results from two randomised phase 3 trials of the STAMPEDE platform protocol

    Get PDF
    Background: Abiraterone acetate plus prednisolone (herein referred to as abiraterone) or enzalutamide added at the start of androgen deprivation therapy improves outcomes for patients with metastatic prostate cancer. Here, we aimed to evaluate long-term outcomes and test whether combining enzalutamide with abiraterone and androgen deprivation therapy improves survival. Methods: We analysed two open-label, randomised, controlled, phase 3 trials of the STAMPEDE platform protocol, with no overlapping controls, conducted at 117 sites in the UK and Switzerland. Eligible patients (no age restriction) had metastatic, histologically-confirmed prostate adenocarcinoma; a WHO performance status of 0–2; and adequate haematological, renal, and liver function. Patients were randomly assigned (1:1) using a computerised algorithm and a minimisation technique to either standard of care (androgen deprivation therapy; docetaxel 75 mg/m2 intravenously for six cycles with prednisolone 10 mg orally once per day allowed from Dec 17, 2015) or standard of care plus abiraterone acetate 1000 mg and prednisolone 5 mg (in the abiraterone trial) orally or abiraterone acetate and prednisolone plus enzalutamide 160 mg orally once a day (in the abiraterone and enzalutamide trial). Patients were stratified by centre, age, WHO performance status, type of androgen deprivation therapy, use of aspirin or non-steroidal anti-inflammatory drugs, pelvic nodal status, planned radiotherapy, and planned docetaxel use. The primary outcome was overall survival assessed in the intention-to-treat population. Safety was assessed in all patients who started treatment. A fixed-effects meta-analysis of individual patient data was used to compare differences in survival between the two trials. STAMPEDE is registered with ClinicalTrials.gov (NCT00268476) and ISRCTN (ISRCTN78818544). Findings: Between Nov 15, 2011, and Jan 17, 2014, 1003 patients were randomly assigned to standard of care (n=502) or standard of care plus abiraterone (n=501) in the abiraterone trial. Between July 29, 2014, and March 31, 2016, 916 patients were randomly assigned to standard of care (n=454) or standard of care plus abiraterone and enzalutamide (n=462) in the abiraterone and enzalutamide trial. Median follow-up was 96 months (IQR 86–107) in the abiraterone trial and 72 months (61–74) in the abiraterone and enzalutamide trial. In the abiraterone trial, median overall survival was 76·6 months (95% CI 67·8–86·9) in the abiraterone group versus 45·7 months (41·6–52·0) in the standard of care group (hazard ratio [HR] 0·62 [95% CI 0·53–0·73]; p&lt;0·0001). In the abiraterone and enzalutamide trial, median overall survival was 73·1 months (61·9–81·3) in the abiraterone and enzalutamide group versus 51·8 months (45·3–59·0) in the standard of care group (HR 0·65 [0·55–0·77]; p&lt;0·0001). We found no difference in the treatment effect between these two trials (interaction HR 1·05 [0·83–1·32]; pinteraction=0·71) or between-trial heterogeneity (I2 p=0·70). In the first 5 years of treatment, grade 3–5 toxic effects were higher when abiraterone was added to standard of care (271 [54%] of 498 vs 192 [38%] of 502 with standard of care) and the highest toxic effects were seen when abiraterone and enzalutamide were added to standard of care (302 [68%] of 445 vs 204 [45%] of 454 with standard of care). Cardiac causes were the most common cause of death due to adverse events (five [1%] with standard of care plus abiraterone and enzalutamide [two attributed to treatment] and one (&lt;1%) with standard of care in the abiraterone trial). Interpretation: Enzalutamide and abiraterone should not be combined for patients with prostate cancer starting long-term androgen deprivation therapy. Clinically important improvements in survival from addition of abiraterone to androgen deprivation therapy are maintained for longer than 7 years. Funding: Cancer Research UK, UK Medical Research Council, Swiss Group for Clinical Cancer Research, Janssen, and Astellas

    Safety, immunogenicity, and reactogenicity of BNT162b2 and mRNA-1273 COVID-19 vaccines given as fourth-dose boosters following two doses of ChAdOx1 nCoV-19 or BNT162b2 and a third dose of BNT162b2 (COV-BOOST): a multicentre, blinded, phase 2, randomised trial

    Get PDF
    Background Some high-income countries have deployed fourth doses of COVID-19 vaccines, but the clinical need, effectiveness, timing, and dose of a fourth dose remain uncertain. We aimed to investigate the safety, reactogenicity, and immunogenicity of fourth-dose boosters against COVID-19.Methods The COV-BOOST trial is a multicentre, blinded, phase 2, randomised controlled trial of seven COVID-19 vaccines given as third-dose boosters at 18 sites in the UK. This sub-study enrolled participants who had received BNT162b2 (Pfizer-BioNTech) as their third dose in COV-BOOST and randomly assigned them (1:1) to receive a fourth dose of either BNT162b2 (30 µg in 0·30 mL; full dose) or mRNA-1273 (Moderna; 50 µg in 0·25 mL; half dose) via intramuscular injection into the upper arm. The computer-generated randomisation list was created by the study statisticians with random block sizes of two or four. Participants and all study staff not delivering the vaccines were masked to treatment allocation. The coprimary outcomes were safety and reactogenicity, and immunogenicity (antispike protein IgG titres by ELISA and cellular immune response by ELISpot). We compared immunogenicity at 28 days after the third dose versus 14 days after the fourth dose and at day 0 versus day 14 relative to the fourth dose. Safety and reactogenicity were assessed in the per-protocol population, which comprised all participants who received a fourth-dose booster regardless of their SARS-CoV-2 serostatus. Immunogenicity was primarily analysed in a modified intention-to-treat population comprising seronegative participants who had received a fourth-dose booster and had available endpoint data. This trial is registered with ISRCTN, 73765130, and is ongoing.Findings Between Jan 11 and Jan 25, 2022, 166 participants were screened, randomly assigned, and received either full-dose BNT162b2 (n=83) or half-dose mRNA-1273 (n=83) as a fourth dose. The median age of these participants was 70·1 years (IQR 51·6–77·5) and 86 (52%) of 166 participants were female and 80 (48%) were male. The median interval between the third and fourth doses was 208·5 days (IQR 203·3–214·8). Pain was the most common local solicited adverse event and fatigue was the most common systemic solicited adverse event after BNT162b2 or mRNA-1273 booster doses. None of three serious adverse events reported after a fourth dose with BNT162b2 were related to the study vaccine. In the BNT162b2 group, geometric mean anti-spike protein IgG concentration at day 28 after the third dose was 23 325 ELISA laboratory units (ELU)/mL (95% CI 20 030–27 162), which increased to 37 460 ELU/mL (31 996–43 857) at day 14 after the fourth dose, representing a significant fold change (geometric mean 1·59, 95% CI 1·41–1·78). There was a significant increase in geometric mean anti-spike protein IgG concentration from 28 days after the third dose (25 317 ELU/mL, 95% CI 20 996–30 528) to 14 days after a fourth dose of mRNA-1273 (54 936 ELU/mL, 46 826–64 452), with a geometric mean fold change of 2·19 (1·90–2·52). The fold changes in anti-spike protein IgG titres from before (day 0) to after (day 14) the fourth dose were 12·19 (95% CI 10·37–14·32) and 15·90 (12·92–19·58) in the BNT162b2 and mRNA-1273 groups, respectively. T-cell responses were also boosted after the fourth dose (eg, the fold changes for the wild-type variant from before to after the fourth dose were 7·32 [95% CI 3·24–16·54] in the BNT162b2 group and 6·22 [3·90–9·92] in the mRNA-1273 group).Interpretation Fourth-dose COVID-19 mRNA booster vaccines are well tolerated and boost cellular and humoral immunity. Peak responses after the fourth dose were similar to, and possibly better than, peak responses after the third dose

    Application of short-time stochastic subspace identification to estimate bridge frequencies from a traversing vehicle

    No full text
    © 2020 Elsevier Ltd This study establishes a short-time stochastic subspace identification (ST-SSI) framework to estimate bridge frequencies by processing the dynamic response of a traversing vehicle. The formulation uses a dimensionless description of the response that simplifies the vehicle-bridge interaction (VBI) problem and brings forward the minimum number of parameters required for the identification. With the aid of the dimensionless parameters the analysis manages to successfully apply ST-SSI despite the time-varying nature of the VBI system. Further, the proposed approach eliminates the adverse effect of the road surface roughness using a transformed residual vehicle response obtained from two traverses of a vehicle at different speeds over the bridge. The study verifies the proposed ST-SSI approach numerically: it first performs the dynamic VBI simulations to obtain the response of the vehicle, and then applies the proposed ST-SSI method, assuming the dynamic characteristics of the vehicle are available. The numerical experiments concern both a sprung mass model and a more realistic multi-degree-of-freedom (MDOF) vehicle model traversing a simply supported bridge. The results show that the proposed approach succeeds in identifying the first two bridge frequencies for test-vehicle speeds much higher (e.g., 10 m/s = 36 km/h and 20 m/s = 72 km/h) than previously considered, even in the presence of high levels of road surface roughness
    corecore